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ma tnssarkal Schuerz al~rittmt, [11, for solvine
elliptic partial differential ~tlons is
eSaentielly 8 block Geuss-sMel mthod for inverting
● aetrlx ~tion. W numri@ SchxSSz elgorlttvn
is only one varimt of the method of overlapping
doacsina. This met.tul yields matrix ~tiona that
me related to the standard Systasw obtained from
elllptic P. O.E.s., [2]. This paper analyzes the use
of Jacobi splittings on these m~ik ~t~.

.

1. The Unear Systems

We consider the solution of the linear system

(1.1) Tx=b

where T is ● pxpblink mtrix of the form

(1.2) T=

‘1 ‘1 1
El ‘2 G2

I

\q%l

% ‘P

‘2i %?1

I

%?1 ‘2i+l %+1 * 2 ~ i ~ P-l

%1+; T2i+2
.

[1Gi=O 0 ,l<i <p-1

0 5?1

HEi = %-l 0 ,2 S1SP
00

Gtch of the aetrices Ri and Ti era n~ x ni
xhere O<n*<n, na@venlntegar, and
further, eech T1 is symatric snd non-slnguler.
The aouz’ca vector b = [01, b,, . . . bp]t there

“w’b=ra
(1.5)

,[1

k?i

‘1= %’ lsisp-2 ‘

%+2

81= nix 1 mlum vector .

Systems (1.1 ) arise frm the msarical SOlutlon of
elliptic partial differential emations by the method
of overlapping domains, cf. [1].

Associatedwith Sfi- (1.1) iS

‘1 ‘1

*t ‘2 ??

1 \

\\

%p-2

&-2 T~.1

(1.7) T, _

(1.8) b“ = [81, ~,..., 62#.

In [21, it was ehoxn that if

TS = b WISSSS = [S1,S2.=, @ t ~~
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(1.9)

[H -

’31

‘i = x,~+l , 2fi <p-1 ,

‘31+2

then.
4“ s’ = [x1tx3, x4tx6, “““ ‘x3i’x3i+l’ ““”’x3P%p+lJt

is a solutim of TIS* = b’ .

Hence, o eolutim of (1.6) can lx? Constructed from a
solution of (1.1). Us ConsMex first order iterative
SMhods for the solutionof (1.1) and Caqme their
conversance mtes to the corresponding iterative
method for the aolutim of (1.6). In particular,
*cobisplittingswill be studied because of their
ueefdneaa on parallel cosputers such as a
multiprocessor.

The following theorem compares the eigenvel~ of
T with tlmse of T’. Weadopt the notetion A(Q) to
dC?f’iOtE!the setof eigenvaluas of a matrix Q.

Theorem 1.1
●

A(T)g Ml’) U [P;l A(T2i) ]
ial

PJo@

SuPpose TX= Mxhere S =[x,lx

Pertionlng Xi, 1 ~ i ~ p, according to

have

xi=~] %=l;+l ‘

N

3i

‘i=x3i+l ‘Z:’i:p-l “

‘3i+2
2.

Hence,

.

,2... , x ) t
~ P“

(1.3) we

( ‘2i - kd)x3i+2= (T2i- ~)X3i+3.
“-

If Uc A (l*i),
E

‘h ‘3i+2 = ‘31+3 and

xc _ [Xl,X3?X4~x6s.**’* t
‘3i’x3i+l’ “““x3p+l’

1s an eigenvector of T’ corresponding to eigenvalue V.

2. J@cobl Methods

Consider ● JecotIi eplltti~ of (1.6}, that

(2.1) MO-N*=

Ei

.t

“1

%?

\

92P-1.

.
‘1

%?!2

4 \
\\ %-2

%-2 %p-1 -

This gives rise to a mrres~l~ Jacobi Splitting

T = M -.N fn (1.1),

[]

4
4

(2.2) M-N .
\

%

where

‘1 J1

‘2 Hz

\

\\

Jp-l

K
PHP -

[1

‘2i-2

(2.3) 4= %-l ,z~i~p-1 ,

%
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[1kl 0
(2.7) Kim , 2:i:p .

00

Proof:

Suppose W = ANXfor soae ●igenvslue a.

If x = [xl, X2,..., XPlt,thenfor1 = 1,.., P

,. ,,

xi =
--
.

‘3i

1
x3i+l $ 2 Li :P-1 .

‘3i+2]

Itmce,
.

‘2ix3i+2 = A ‘G2~+lx3i+l + ‘2ix3i+1 + %ix3A+4)

‘2ix3i+3= A ‘$i+1x3i+1 + %ix3i+3 + %ix3i+4)

is WI dgenvector of

eifmvslueA.

‘6’ ““’ ‘3i, 31+1’ ”.*X#*~ It

O@)-%’corresponehg to the

3. Point-kobi Splitting for Loplece’s EWtim

-ider the SyStSHII(1.6) where

[1‘1 %

(3.1) T * ~

h2%F2’

[wA -1
(3.2) T1*T3= -]

\

\

r,

-1

-1 A

[ 1}
A “-I

T2 = -1 k,

-1

-1 A

Then, 19 is astrix obteineu frcxme 3-point
aiscretizatim with sesh size h = Un+l of @lace’s
ewstim OfI

?

~tm~. m@IT.U-N

T
W reM =(4/ )1. T~,N=H-T=tMt
N_ N = I - ( /4)T. Also, in (2.3),
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D;lq = I - (h2/r)T2 . m by Tn@Orm2.1,

U(M’)-lN’{8 }1 - (h2/4) X(1’) )

= A (1 - (h2/4)T)

{
(3.3) ={1-(3/4) a(T))

~ A [(M’)-%’] U A(D#E2)

L*

= {1 - (h2/4) A (T*)} U {1 - (h2/4) X ($)) .

Trwrem 3.1

For thesysten given by (3.1),

p [(M*)%*
-1=P (MN).

~

By ThsoreIs 1.1, A (l’)& A (T)g A(T’)U A(T2)

so thatUw e@anveluas of T are reel. WeShOWthat

tin {v) < ain {M)

uc A (T*) MS A (T2)

end
Rex {u) > max {u} .

w 1 (T’) uc A (T2)

Thh result will then follow from (3.3)

Note that w a (T2) imlias

u = l/h2[4 -2 Cm (pm /n} - 2 cm WI /n)]

forp=l,2, . . .. l-l

i Q=l,2, . ..) l-..,

Nence,

min {u] . (1/h2) [4 -2 cos (s/k) -2 cos (dn)] ,

●nd

mek {u] = (1/h2) {4 + 4 ms (w /n) ) .

uc A (T’)

4. Coamltetional Results

We solve the system (3.1) with the e@tting
(2.2) where

Di=LiL~ ,1=1,2,

is the lncosplet.a Cholesk factorizatim of Rj ●nd
F2P re-tively, In (3.li. We vary the integer k
in (3.2) to determine if the iteration count is
invariant to k thus, ● theorem such ●s Theorem 3.1
fnight hold. Teble 1 records the results with & =
1/31 end Ay = 1/65 for Leplace’s eution Au = O
endu.2onboundery

Table 1

T
k

o

1:
25
30
35

lteretims

640
644
642
642
642
642
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.a

,> me%{ M ) = (l/h )[4 + 2 cos (s/k) + 2 cos (tin)]

. .
*

m Now, uc 1 (T’) ix@ias

u. (1/h2) [4 -2 cos (@*/n) -2 cos

forp, a=l, . ..r l-l..

Nenca “

(ox /n)

This work was performed under the auspices of the
U.S. ila~r~t of Energy Office of Ossic Ener

?“Sciences, 4@plied Nethmetics md Statistics O vision.

nin {u} = (1/h2) {4 -4 cos (S / n) ]

uc A (T’)

-4-


